Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 11(1): 014415, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38545127

RESUMO

The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada.

2.
Neurophotonics ; 11(1): 014401, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38550388

RESUMO

The editorial presents the two-part Special Section on Frontiers in Neurophotonics.

3.
Pain ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277178

RESUMO

ABSTRACT: Abnormal encoding of somatosensory modalities (ie, mechanical, cold, and heat) are a critical part of pathological pain states. Detailed phenotyping of patients' responses to these modalities have raised hopes that analgesic treatments could one day be tailored to a patient's phenotype. Such precise treatment would require a profound understanding of the underlying mechanisms of specific pain phenotypes at molecular, cellular, and circuitry levels. Although preclinical pain models have helped in that regard, the lack of a unified assay quantifying detailed mechanical, cold, and heat pain responses on the same scale precludes comparing how analgesic compounds act on different sensory phenotypes. The conflict avoidance assay is promising in that regard, but testing conditions require validation for its use with multiple modalities. In this study, we improve upon the conflict avoidance assay to provide a validated and detailed assessment of all 3 modalities within the same animal, in mice. We first optimized testing conditions to minimize the necessary amount of training and to reduce sex differences in performances. We then tested what range of stimuli produce dynamic stimulus-response relationships for different outcome measures in naive mice. We finally used this assay to show that nerve injury produces modality-specific sex differences in pain behavior. Our improved assay opens new avenues to study the basis of modality-specific abnormalities in pain behavior.

4.
Pain ; 165(5): 1131-1141, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112748

RESUMO

ABSTRACT: Heightened spontaneous activity in sensory neurons is often reported in individuals living with chronic pain. It is possible to study this activity in rodents using electrophysiology, but these experiments require great skill and can be prone to bias. Here, we have examined whether in vivo calcium imaging with GCaMP6s can be used as an alternative approach. We show that spontaneously active calcium transients can be visualised in the fourth lumbar dorsal root ganglion (L4 DRG) through in vivo imaging in a mouse model of inflammatory pain. Application of lidocaine to the nerve, between the inflamed site and the DRG, silenced spontaneous firing and revealed the true baseline level of calcium for spontaneously active neurons. We used these data to train a machine learning algorithm to predict when a neuron is spontaneously active. We show that our algorithm is accurate in 2 different models of pain: intraplantar complete Freund adjuvant and antigen-induced arthritis, with accuracies of 90.0% ±1.2 and 85.9% ±2.1, respectively, assessed against visual inspection by an experienced observer. The algorithm can also detect neuronal activity in imaging experiments generated in a different laboratory using a different microscope configuration (accuracy = 94.0% ±2.2). We conclude that in vivo calcium imaging can be used to assess spontaneous activity in sensory neurons and provide a Google Colaboratory Notebook to allow anyone easy access to our novel analysis tool, for the assessment of spontaneous neuronal activity in their own imaging setups.


Assuntos
Cálcio , Células Receptoras Sensoriais , Camundongos , Animais , Potenciais de Ação/fisiologia , Células Receptoras Sensoriais/fisiologia , Dor , Lidocaína
5.
Artigo em Inglês | MEDLINE | ID: mdl-38082985

RESUMO

Miniaturized fluorescence microscopy has revolutionized the way neuroscientists study the brain in-vivo. Recent developments in computational lensless imaging promise a next generation of miniaturized microscopes in lensless fluorescence microscopy. We developed a microscope prototype using an optimized Fresnel amplitude mask. While many lensless imaging modalities have reported excellent performance using Deep Learning (DL) approaches, DL application in fluorescence imaging has been left untouched. We generated a computational dataset based on experimental system calibration to evaluate DL capabilities on biological cell morphologies. We show that our DL-assisted microscope can provide high-quality imaging with a structural similarity index of 89%. The least absolute error was decreased by 63% using the DL-assisted method compared with the classical models. The state-of-the-art performance of this prototype enhances the expected potential of amplitude masks in lensless microscopy applications, which are critical for robust in-vivo flat microscopy with engineered image sensors.Clinical Relevance- This study aids in advancing miniaturized fluorescence microscopy, which greatly impacts long-term brain circuit and disease studies in freely moving animal models.


Assuntos
Aprendizado Profundo , Animais , Microscopia de Fluorescência , Imagem Óptica , Cabeça
6.
Sci Adv ; 9(40): eadi8750, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37792939

RESUMO

Early-life adversities are associated with altered defensive responses. Here, we demonstrate that the repeated cross-fostering (RCF) paradigm of early maternal separation is associated with enhancements of distinct homeostatic reactions: hyperventilation in response to hypercapnia and nociceptive sensitivity, among the first generation of RCF-exposed animals, as well as among two successive generations of their normally reared offspring, through matrilineal transmission. Parallel enhancements of acid-sensing ion channel 1 (ASIC1), ASIC2, and ASIC3 messenger RNA transcripts were detected transgenerationally in central neurons, in the medulla oblongata, and in periaqueductal gray matter of RCF-lineage animals. A single, nebulized dose of the ASIC-antagonist amiloride renormalized respiratory and nociceptive responsiveness across the entire RCF lineage. These findings reveal how, following an early-life adversity, a biological memory reducible to a molecular sensor unfolds, shaping adaptation mechanisms over three generations. Our findings are entwined with multiple correlates of human anxiety and pain conditions and suggest nebulized amiloride as a therapeutic avenue.


Assuntos
Amilorida , Privação Materna , Animais , Humanos , Amilorida/farmacologia , RNA Mensageiro , Ansiedade
7.
Brain ; 146(12): 4903-4915, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37551444

RESUMO

Disinhibition during early stages of Alzheimer's disease is postulated to cause network dysfunction and hyperexcitability leading to cognitive deficits. However, the underlying molecular mechanism remains unknown. Here we show that, in mouse lines carrying Alzheimer's disease-related mutations, a loss of neuronal membrane potassium-chloride cotransporter KCC2, responsible for maintaining the robustness of GABAA-mediated inhibition, occurs pre-symptomatically in the hippocampus and prefrontal cortex. KCC2 downregulation was inversely correlated with the age-dependent increase in amyloid-ß 42 (Aß42). Acute administration of Aß42 caused a downregulation of membrane KCC2. Loss of KCC2 resulted in impaired chloride homeostasis. Preventing the decrease in KCC2 using long term treatment with CLP290 protected against deterioration of learning and cortical hyperactivity. In addition, restoring KCC2, using short term CLP290 treatment, following the transporter reduction effectively reversed spatial memory deficits and social dysfunction, linking chloride dysregulation with Alzheimer's disease-related cognitive decline. These results reveal KCC2 hypofunction as a viable target for treatment of Alzheimer's disease-related cognitive decline; they confirm target engagement, where the therapeutic intervention takes place, and its effectiveness.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Simportadores , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Cloretos , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/genética , Simportadores/genética , Mutação/genética , Modelos Animais de Doenças
8.
Opt Express ; 31(14): 23008-23026, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475396

RESUMO

Intravital microscopy in small animals growingly contributes to the visualization of short- and long-term mammalian biological processes. Miniaturized fluorescence microscopy has revolutionized the observation of live animals' neural circuits. The technology's ability to further miniaturize to improve freely moving experimental settings is limited by its standard lens-based layout. Typical miniature microscope designs contain a stack of heavy and bulky optical components adjusted at relatively long distances. Computational lensless microscopy can overcome this limitation by replacing the lenses with a simple thin mask. Among other critical applications, Flat Fluorescence Microscope (FFM) holds promise to allow for real-time brain circuits imaging in freely moving animals, but recent research reports show that the quality needs to be improved, compared with imaging in clear tissue, for instance. Although promising results were reported with mask-based fluorescence microscopes in clear tissues, the impact of light scattering in biological tissue remains a major challenge. The outstanding performance of deep learning (DL) networks in computational flat cameras and imaging through scattering media studies motivates the development of deep learning models for FFMs. Our holistic ray-tracing and Monte Carlo FFM computational model assisted us in evaluating deep scattering medium imaging with DL techniques. We demonstrate that physics-based DL models combined with the classical reconstruction technique of the alternating direction method of multipliers (ADMM) perform a fast and robust image reconstruction, particularly in the scattering medium. The structural similarity indexes of the reconstructed images in scattering media recordings were increased by up to 20% compared with the prevalent iterative models. We also introduce and discuss the challenges of DL approaches for FFMs under physics-informed supervised and unsupervised learning.


Assuntos
Aprendizado Profundo , Cristalino , Lentes , Animais , Microscopia de Fluorescência/métodos , Microscopia Intravital , Processamento de Imagem Assistida por Computador/métodos , Mamíferos
9.
Neurophotonics ; 10(3): 035002, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37362387

RESUMO

Significance: Typical light sheet microscopes suffer from artifacts related to the geometry of the light sheet. One main inconvenience is the non-uniform thickness of the light sheet obtained with a Gaussian laser beam. Aim: We developed a two-photon light sheet microscope that takes advantage of a thin and long Bessel-Gauss beam illumination to increase the sheet extent without compromising the resolution. Approach: We use an axicon lens placed directly at the output of an amplified femtosecond laser to produce a long Bessel-Gauss beam on the sample. We studied the dopaminergic system and its projections in a whole cleared mouse brain. Results: Our light sheet microscope allows an isotropic resolution of 2.4 µm in all three axes of the scanned volume while keeping a millimetric-sized field of view, and a fast acquisition rate of up to 34 mm2/s. With slight modifications to the optical setup, the sheet extent can be increased to 6 mm. Conclusion: The proposed system's sheet extent and resolution surpass currently available systems, enabling the fast imaging of large specimens.

10.
J Psychopharmacol ; 37(5): 437-448, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37171242

RESUMO

The opioid crisis' pathways from first exposure onwards to eventual illnesses and fatalities are multiple, intertwined and difficult to dissect. Here, we offer a multidisciplinary appraisal of the relationships among mental health, chronic pain, prescribing patterns worldwide and the opioid crisis. Because the opioid crisis' toll is especially harsh on young people, emphasis is given on data regarding the younger strata of the population. Because analgesic opioid prescription constitute a recognised entry point towards misuse, opioid use disorder, and ultimately overdose, prescribing patterns across different countries are examined as a modifiable hazard factor along these pathways of risk. Psychiatrists are called to play a more compelling role in this urgent conversation, as they are uniquely placed to provide synthesis and lead action among the different fields of knowledge and care that lie at the crossroads of the opioid crisis. Psychiatrists are also ideally positioned to gauge and disseminate the foundations for diagnosis and clinical management of mental conditions associated with chronic pain, including the identification of hazardous and protective factors. It is our hope to spark more interdisciplinary exchanges and encourage psychiatrists worldwide to become leaders in an urgent conversation with interlocutors from the clinical and basic sciences, policy makers and stakeholders including clients and their families.


Assuntos
Dor Crônica , Transtornos Relacionados ao Uso de Opioides , Humanos , Adolescente , Dor Crônica/tratamento farmacológico , Saúde Mental , Epidemia de Opioides , Analgésicos Opioides/efeitos adversos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Padrões de Prática Médica
11.
Cell Rep ; 42(1): 112010, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656715

RESUMO

Neuropathic pain is a debilitating condition resulting from damage to the nervous system. Imbalance of spinal excitation and inhibition has been proposed to contribute to neuropathic pain. However, the structural basis of this imbalance remains unknown. Using a preclinical model of neuropathic pain, we show that microglia selectively engulf spinal synapses that are formed by central neurons and spare those of peripheral sensory neurons. Furthermore, we reveal that removal of inhibitory and excitatory synapses exhibits distinct temporal patterns, in which microglia-mediated inhibitory synapse removal precedes excitatory synapse removal. We also find selective and gradual increase in complement depositions on dorsal horn synapses that corresponds to the temporal pattern of microglial synapse pruning activity and type-specific synapse loss. Together, these results define a specific role for microglia in the progression of neuropathic pain pathogenesis and implicate these immune cells in structural remodeling of dorsal horn circuitry.


Assuntos
Microglia , Neuralgia , Humanos , Microglia/patologia , Neuralgia/patologia , Corno Dorsal da Medula Espinal/patologia , Sinapses/patologia , Medula Espinal/patologia
12.
Br J Pharmacol ; 180(7): 958-974, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34363210

RESUMO

BACKGROUND AND PURPOSE: Opioid-based drugs are the gold standard medicines for pain relief. However, tolerance and several side effects (i.e. constipation and dependence) may occur upon chronic opioid administration. Photopharmacology is a promising approach to improve the benefit/risk profiles of these drugs. Thus, opioids can be locally activated with high spatiotemporal resolution, potentially minimizing systemic-mediated adverse effects. Here, we aimed at developing a morphine photo-derivative (photocaged morphine), which can be activated upon light irradiation both in vitro and in vivo. EXPERIMENTAL APPROACH: Light-dependent activity of pc-morphine was assessed in cell-based assays (intracellular calcium accumulation and electrophysiology) and in mice (formalin animal model of pain). In addition, tolerance, constipation and dependence were investigated in vivo using experimental paradigms. KEY RESULTS: In mice, pc-morphine was able to elicit antinociceptive effects, both using external light-irradiation (hind paw) and spinal cord implanted fibre-optics. In addition, remote morphine photoactivation was devoid of common systemic opioid-related undesired effects, namely, constipation, tolerance to the analgesic effects, rewarding effects and naloxone-induced withdrawal. CONCLUSION AND IMPLICATIONS: Light-dependent opioid-based drugs may allow effective analgesia without the occurrence of tolerance or the associated and severe opioid-related undesired effects. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Analgesia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Camundongos , Animais , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Dor/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico
14.
Brain Commun ; 4(6): fcac256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337346

RESUMO

Acid-sensing ion channels (ASICs) play a critical role in nociception in human sensory neurons. Four genes (ASIC1, ASIC2, ASIC3, and ASIC4) encoding multiple subunits through alternative splicing have been identified in humans. Real time-PCR experiments showed strong expression of three subunits ASIC1, ASIC2, and ASIC3 in human dorsal root ganglia; however, their detailed expression pattern in different neuronal populations has not been investigated yet. In the current study, using an in situ hybridization approach (RNAscope), we examined the presence of ASIC1, ASIC2, and ASIC3 mRNA in three subpopulations of human dorsal root ganglia neurons. Our results revealed that ASIC1 and ASIC3 were present in the vast majority of dorsal root ganglia neurons, while ASIC2 was only expressed in less than half of dorsal root ganglia neurons. The distribution pattern of the three ASIC subunits was the same across the three populations of dorsal root ganglia neurons examined, including neurons expressing the REarranged during Transfection (RET) receptor tyrosine kinase, calcitonin gene-related peptide, and a subpopulation of nociceptors expressing Transient Receptor Potential Cation Channel Subfamily V Member 1. These results strongly contrast the expression pattern of Asics in mice since our previous study demonstrated differential distribution of Asics among the various subpopulation of dorsal root ganglia neurons. Given the distinct acid-sensitivity and activity dynamics among different ASIC channels, the expression differences between human and rodents should be taken under consideration when evaluating the translational potential and efficiency of drugs targeting ASICs in rodent studies.

15.
Sci Rep ; 12(1): 17010, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220871

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated with the loss of cortical and spinal motor neurons (MNs) and muscle degeneration (Kiernan et al. in Lancet 377:942-955, 2011). In the preclinical setting, functional tests that can detect early changes in motor function in rodent models of ALS are critical to understanding the etiology of the disease and treatment development. Here, we established a string-pulling paradigm that can detect forelimb and hindlimb motor deficits in the SOD1 mouse model of ALS earlier than traditional motor performance tasks. Additionally, our findings indicate that early loss of forelimb and hindlimb function is correlated with cortical and spinal MN loss, respectively. This task is not only ecological, low-cost, efficient, and non-onerous, it also requires little animal handling and reduces the stress placed on the animal. It has long been a concern in the field that the SOD1 mouse does not display forelimb motor deficits and does not give researchers a complete picture of the disease. Here, we provide evidence that the SOD1 model does in fact develop early forelimb motor deficits due to the task's ability to assess fine-motor function, reconciling this model with the various clinical presentation of ALS. Taken together, the string-pulling paradigm may provide novel insights into the pathogenesis of ALS, offer nuanced evaluation of prospective treatments, and has high translational potential to the clinic.


Assuntos
Esclerose Amiotrófica Lateral , Esclerose Amiotrófica Lateral/patologia , Animais , Modelos Animais de Doenças , Membro Anterior , Membro Posterior/patologia , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/fisiologia , Superóxido Dismutase-1/genética
16.
Sci Adv ; 8(30): eabo0689, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35895817

RESUMO

Descending control from the brain to the spinal cord shapes our pain experience, ranging from powerful analgesia to extreme sensitivity. Increasing evidence from both preclinical and clinical studies points to an imbalance toward descending facilitation as a substrate of pathological pain, but the underlying mechanisms remain unknown. We used an optogenetic approach to manipulate serotonin (5-HT) neurons of the nucleus raphe magnus that project to the dorsal horn of the spinal cord. We found that 5-HT neurons exert an analgesic action in naïve mice that becomes proalgesic in an experimental model of neuropathic pain. We show that spinal KCC2 hypofunction turns this descending inhibitory control into paradoxical facilitation; KCC2 enhancers restored 5-HT-mediated descending inhibition and analgesia. Last, combining selective serotonin reuptake inhibitors (SSRIs) with a KCC2 enhancer yields effective analgesia against nerve injury-induced pain hypersensitivity. This uncovers a previously unidentified therapeutic path for SSRIs against neuropathic pain.

18.
Science ; 377(6601): 80-86, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617374

RESUMO

Activation of microglia in the spinal cord dorsal horn after peripheral nerve injury contributes to the development of pain hypersensitivity. How activated microglia selectively enhance the activity of spinal nociceptive circuits is not well understood. We discovered that after peripheral nerve injury, microglia degrade extracellular matrix structures, perineuronal nets (PNNs), in lamina I of the spinal cord dorsal horn. Lamina I PNNs selectively enwrap spinoparabrachial projection neurons, which integrate nociceptive information in the spinal cord and convey it to supraspinal brain regions to induce pain sensation. Degradation of PNNs by microglia enhances the activity of projection neurons and induces pain-related behaviors. Thus, nerve injury-induced degradation of PNNs is a mechanism by which microglia selectively augment the output of spinal nociceptive circuits and cause pain hypersensitivity.


Assuntos
Hiperalgesia , Microglia , Dor , Traumatismos dos Nervos Periféricos , Corno Dorsal da Medula Espinal , Animais , Matriz Extracelular/patologia , Hiperalgesia/etiologia , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Microglia/patologia , Dor/patologia , Dor/fisiopatologia , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiopatologia
19.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579957

RESUMO

The encoding of noxious stimuli into action potential firing is largely mediated by nociceptive free nerve endings. Tissue inflammation, by changing the intrinsic properties of the nociceptive endings, leads to nociceptive hyperexcitability and thus to the development of inflammatory pain. Here, we showed that tissue inflammation-induced activation of the mammalian target of rapamycin complex 2 (mTORC2) triggers changes in the architecture of nociceptive terminals and leads to inflammatory pain. Pharmacological activation of mTORC2 induced elongation and branching of nociceptor peripheral endings and caused long-lasting pain hypersensitivity. Conversely, nociceptor-specific deletion of the mTORC2 regulatory protein rapamycin-insensitive companion of mTOR (Rictor) prevented inflammation-induced elongation and branching of cutaneous nociceptive fibers and attenuated inflammatory pain hypersensitivity. Computational modeling demonstrated that mTORC2-mediated structural changes in the nociceptive terminal tree are sufficient to increase the excitability of nociceptors. Targeting mTORC2 using a single injection of antisense oligonucleotide against Rictor provided long-lasting alleviation of inflammatory pain hypersensitivity. Collectively, we showed that tissue inflammation-induced activation of mTORC2 causes structural plasticity of nociceptive free nerve endings in the epidermis and inflammatory hyperalgesia, representing a therapeutic target for inflammatory pain.


Assuntos
Dor Crônica , Nociceptores , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nociceptores/fisiologia , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirolimo
20.
BMJ Open ; 12(4): e048749, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379610

RESUMO

INTRODUCTION: The COVID-19 pandemic and associated restrictive measures have caused important disruptions in economies and labour markets, changed the way we work and socialise, forced schools to close and healthcare and social services to reorganise. This unprecedented crisis forces individuals to make considerable efforts to adapt and will have psychological and social consequences, mainly on vulnerable individuals, that will remain once the pandemic is contained and will most likely exacerbate existing social and gender health inequalities. This crisis also puts a toll on the capacity of our healthcare and social services structures to provide timely and adequate care. The MAVIPAN (Ma vie et la pandémie/ My Life and the Pandemic) study aims to document how individuals, families, healthcare workers and health organisations are affected by the pandemic and how they adapt. METHODS AND ANALYSIS: MAVIPAN is a 5-year longitudinal prospective cohort study launched in April 2020 across the province of Quebec (Canada). Quantitative data will be collected through online questionnaires (4-6 times/year) according to the evolution of the pandemic. Qualitative data will be collected with individual and group interviews and will seek to deepen our understanding of coping strategies. Analysis will be conducted under a mixed-method umbrella, with both sequential and simultaneous analyses of quantitative and qualitative data. ETHICS AND DISSEMINATION: MAVIPAN aims to support the healthcare and social services system response by providing high-quality, real-time information needed to identify those who are most affected by the pandemic and by guiding public health authorities' decision making regarding intervention and resource allocation to mitigate these impacts. MAVIPAN was approved by the Ethics Committees of the Primary Care and Population Health Research Sector of CIUSSS de la Capitale-Nationale (Committee of record) and of the additional participating institutions. TRIAL REGISTRATION NUMBER: NCT04575571.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Saúde Global , Humanos , Estudos Prospectivos , Saúde Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...